Utilisation du calcul tensoriel dans les géométries riemanniennes Cours et exercices corrigés – Claude Jeanperrin

36,75

Etat : Bon état

Le passage de la géométrie unique et universelle (compilée par Euclide trois siècles av. J.-C.) à des géométries différentes mais tout aussi …

1 en stock

UGS : 23175 Catégorie :

Description

Résumé :
Le passage de la géométrie unique et universelle (compilée par Euclide trois siècles av. J.-C.) à des géométries différentes mais tout aussi logiques s est fait sur un plan théorique notamment grâce aux travaux de Lobatchevski Bolyaï et Riemann au XIXe siècle. Ces chercheurs ne se doutaient pas que leur construction de l esprit deviendrait un des outils de la révolution que la physique allait connaître un quart de siècle plus tard notamment avec Einstein et la relativité générale.

Ces nouvelles géométries bizarres maintenant qualifiées de riemanniennes entraient dans le domaine pratique et devenaient indispensables à l étude cosmologique puisque la géométrie euclidienne apparaissait comme une approximation locale non valable à l échelle de l Univers. Mais les géométries riemanniennes trouvent aussi des applications dans des domaines plus terre-à-terre comme l optique des milieux continus ou l étude des surfaces courbes en ingéniérie mécanique.

Malheureusement faute de temps et de place dans les programmes d enseignement de la physique leur étude est souvent escamotée et les étudiants de ces disciplines doivent se contenter d un digest de recettes à admettre portant sur les notions fondamentales de courbure de géodésiques et autres lesquelles restent souvent bien floues dans les esprits. Le présent livre se propose alors de faire découvrir les particularités de ces géométries inhabituelles à petites doses de façon progressive en essayant d en faire apparaître le pourquoi et en prenant garde aux généralisations trop hâtives allant de soi mais débouchant parfois sur des idées fausses.

Un petit voyage est prévu à ce propos dans la fameuse cinquième dimension. Même si ces géométries sont nées sans faire appel à la notion de tenseur le formalisme tensoriel s est rapidement imposé comme outil particulièrement élégant et efficace au cours de leur développement. Il faut toutefois se rappeler que cette efficacité est en grande partie liée à l ingéniosité d un système de notation des indices lié à leur variance (notation d Einstein) dont l usage n est malheureusement pas encore partout entré dans les moeurs.

Bien entendu il en est fait systématiquement usage dans ce livre. Et la maîtrise d un outil s acquérant essentiellement par la pratique des exercices implicitement ou explicitement orientés vers les applications citées plus haut ont été prévus à cet effet.

Cette nouvelle édition augmentée d un ouvrage de référence d initiation aux géométries riemanienne compte dans chaque chapitre des points de rappel un cours détaillé et des exercices commentés et corrigés..

Informations complémentaires

Poids 0,76 kg
Etat

ISBN

Marque

ELLIPSES

Avis

Il n’y a pas encore d’avis.

Soyez le premier à laisser votre avis sur “Utilisation du calcul tensoriel dans les géométries riemanniennes Cours et exercices corrigés – Claude Jeanperrin”

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Utilisation du calcul tensoriel dans les géométries riemanniennes Cours et exercices corrigés – Claude Jeanperrin
Utilisation du calcul tensoriel dans les géométries riemanniennes Cours et exercices corrigés – Claude Jeanperrin

36,75

Ajouter au panier